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Abstract 

Purpose Paper-based artifacts hold significant cultural and social values. However, paper is intrinsically fragile 
to microorganisms, such as mold, due to its cellulose composition, which can serve as a microorganisms’ nutrient 
source. Mold not only can damage papers’ structural integrity and pose significant challenges to conservation works 
but also may subject individuals attending the contaminated artifacts to health risks. Current approaches for strain 
identification usually require extensive training, prolonged time for analysis, expensive operation costs, and higher 
risks of secondary damage due to sampling. Thus, in current conservation practices with mold-contaminated artifacts, 
little pre-screening or strain identification was performed before mold removal, and the cleaning techniques are 
usually broad-spectrum rather than strain-specific. With deep learning showing promising applications across various 
domains, this study investigated the feasibility of using a convolutional neural network (CNN) for fast in-situ recogni-
tion and classification of mold on paper.

Methods Molds were first non-invasively sampled from ancient Xuan Paper-based Chinese books from the Qing 
and Ming dynasties. Strains were identified using molecular biology methods and the four most prevalent strains 
were inoculated on Xuan paper to create mockups for image collection. Microscopic images of the molds as well 
as their stains situated on paper were collected using a compound microscope and commercial microscope lens 
for cell phone cameras, which were then used for training CNN models with a transfer learning scheme to perform 
the classification of mold. To enable involvement and contribution from the research community, a web interface 
that actuates the process while providing interactive features for users to learn about the information of the classified 
strain was constructed. Moreover, a feedback functionality in the web interface was embedded for catching potential 
classification errors, adding additional training images, or introducing new strains, all to refine the generalizability 
and robustness of the model.

Results & Conclusion In the study, we have constructed a suite of high-confidence classification CNN models 
for the diagnostic process for mold contamination in conservation. At the same time, a web interface was constructed 
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that allows recurrently refining the model with human feedback through engaging the research community. Overall, 
the proposed framework opens new avenues for effective and timely identification of mold, thus enabling proactive 
and targeted mold remediation strategies in conservation.

Keywords Paper-based cultural relics, Conservation, Computer vision, Deep learning, Strain classification, Web 
application, Iterative training, Human feedback

Introduction
Paper has been one of the main mediums of communi-
cation and knowledge representation throughout his-
tory and across the world. However, due to its cellulose 
composition, paper is susceptible to various physical, 
chemical, and biological agents present in the environ-
ment, particularly to microorganisms such as molds [1]. 
Aged papers are especially prone due to spontaneous 
and environment-induced acidification, which creates 
a hospitable environment for microorganisms to grow 
and reproduce [2]. The byproducts of microorganisms’ 
growth and metabolism contain enzymes and acidic 
compounds that will disintegrate the fibrous cellulose 
structure of the paper, resulting in both aesthetic and 
mechanical deterioration to the paper material itself as 
well as the information it carries [3]. Furthermore, given 
the omnipresence of microorganisms [4], there are con-
stant threats of contamination to paper-based materi-
als. The contamination process is usually undetectable 
by the naked eye, making it difficult to intervene at an 
early stage [5]. When the contamination is visibly appar-
ent, a substantial colony composed of microorganisms 
has already been engraved in the cellulose structure of 
the paper, causing irreversible deterioration, making 
the time window for effective remedial measures highly 
limited. Thus, the impacts of microorganisms on books, 
documents, and other paper-based materials may result 
in inestimable cultural losses [1, 6] and may induce huge 
financial burdens [7, 8]. Therefore, effective detection and 
treatment of bio-contamination due to microorganisms’ 
contamination are crucial for the preservation of unique 
artifacts for humanity and future generations [9].

Current mold remediation practices in conservation 
are generally wide-spectrum. A general workflow con-
sists of mechanical cleaning of microorganism bodies 
through brushing and vacuum cleaning and sometimes 
coupled with chemical or physical treatment to fur-
ther eradicate the microorganism spores [10]. Chemi-
cal methods involve fumigation using membrane-active 
microbicides, such as alcohol, salicylanilides, and qua-
ternary ammonium salts. These microbicides coat the 
cell wall and then cause damage to the structure of the 
mold bodies. Alternatively, electrophilically active micro-
bicides such as aldehydes and organometallic compounds 
act through electrophilic addition or substitution to 

cause enzyme inactivation [1]. These wide-spectrum 
biocides, however, could induce more rapid mutations 
in the microorganism strain, and elevate environmental 
risks and public health concerns [11]. On the other hand, 
physical techniques involve dehydration, radiation, and 
deoxygenation that perturb the hospitable environmental 
conditions that are essential for molds to survive and fur-
ther reproduce [1]. However, the extreme environmental 
conditions applied in the physical methods could subject 
the delicate ancient paper material to secondary damage. 
The development of species-targeted approaches has the 
potential to minimize the risk of secondary destruction 
and aligns with the conservation principle of “minimum 
intervention” [12]. For example, species-targeted bioc-
ides could be designed based on different biocidal resist-
ances observed in different microorganism species [13]. 
After all, successful implementation of such treatments 
relies heavily on fast and accessible microorganism iden-
tification methods.

Additionally, the identification of mold species has 
the potential to resolve practical and safety problems in 
conservation work settings. First, different consortia of 
microorganisms display varying mechanisms of destruc-
tion [6], making it challenging for conservators to provide 
an accurate condition report and propose the optimal 
treatment options without knowing the contaminating 
species. However, if the strain of the mold is known when 
diagnosing the material, the best approach to conserve 
can be devised accordingly. More importantly, accord-
ing to the Centers for Disease Control and Prevention 
(CDC), mold is associated with many health complica-
tions. People who have access to or frequently attend to 
the contaminated materials are subjected to potential 
health risks given the presence of mold [6, 14]. Molds 
can invade living tissues and cause diseases or allergies, 
such as allergic skin, respiratory symptoms, or gastroin-
testinal disorders [6, 15]. The pathogenicity, transmission 
route, and infection severity are also distinctive with vari-
ous species. As a result, to ensure efficiency and safety in 
the treatment of microbial contamination, species of the 
mold should be carefully identified and evaluated [3].

The identification of mold species before conserva-
tion practices is not common in the current conservation 
field. This is primarily because the mainstream identifi-
cation techniques, namely culture-based and molecular 
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biological methods, are not widely accessible from the 
conservators’ point of view [15]. Culture-based tech-
niques rely heavily on culturing the microorganisms in a 
qualified laboratory environment, which is time-consum-
ing in terms of both making connections with specialized 
labs and conducting the analysis. Meanwhile, molecular 
biology techniques that directly analyze the sequence of 
the target organisms, even though has high authenticity 
and accuracy, take a prolonged period to generate results 
[8, 16]. For example, pyrosequencing, which is based 
on the luminometric detection of pyrophosphate can 
achieve an accuracy of 99% but a single run takes 24  h 
[17]. Illumina, a sequencing method based on a reversible 
dye-terminator and engineered polymerase can achieve 
single-shot accuracy of 99.9%, however, the operation 
time is 1–11  days [18]. Another significant drawback 
of sequencing techniques is that, to obtain sufficient 
amounts of sample, they require direct sampling from the 
object being conserved, which is considered invasive and 
would induce secondary damage, especially to delicate 
historical material [3]. In summary, fast and non-invasive 
tools are still absent for conservators and other practi-
tioners in everyday work.

AI-enabled applications are gradually integrating 
into various aspects of our lives. Benefiting from the 
quick advancements in artificial neural networks called 
deep neural networks (DNN), more and more challeng-
ing tasks that once required profound human expertise 
can now be achieved by computers [16, 19]. In particu-
lar, computer vision (CV), a branch of DNN applica-
tion that enables computers to identify and understand 
objects and people in images and videos [19], is gain-
ing momentum in assisting with expert-level image and 
video-related tasks and can capture intricate features that 
may not be apparent to the naked eye [20]. For example, 
CV has shown huge potential in the field of medicine to 
enhance healthcare workflows [20]. A team of experts 
in Poland applied DNN and a bag-of-words approach 
to classify microscopic images of various fungal species. 
The approach significantly reduced the diagnostic time 
from 4 to 10 days down to less than 3 days. This not only 
allows faster decisions regarding antifungal treatments 
to be prescribed to patients who had a fungal infection, 
resulting in shorter recovery time but also reduces the 
cost of diagnosis due to the replacement of biochemical 
testing procedures [21]. There have also been attempts 
to integrate DL techniques into conservation practices. 
For example, Hatir et al. proposed to use deep neural net-
works to assist with the task of classifying the weathering 
condition for historical stone monuments which can help 
in conservation and restoration practices [22]. Another 
team in China proposed using FSNet to automatically 
recognize and count fungal spores in microscopic images 

to help monitor grain storage and detect signs of spoil-
ing and fungi contamination [23]. Given the nearly real-
time feedback and minimal invasiveness, CV is an ideal 
candidate for diagnosing delicate cultural heritage like 
paper. Thus, this study investigated the feasibility of a 
CV-based diagnostic tool for identifying mold strains 
on paper-based relics non-invasively to assist conserva-
tion practices. Convolutional Neural Network (CNN) 
architectures, a type of mainstream CV algorithm, were 
experimented with to classify the strains with micro-
scopic images. At the same time, the study provides a 
framework to allow the tool to grow in tandem with the 
growing knowledge in the field of conservation.

Methods
Sample preparation
Microscopic images of the visually apparent stained 
regions on paper were collected for modeling “Modeling” 
section. The sample preparation process involves extract-
ing the molds from ancient artifacts, creating contami-
nated mockups for the ancient artifacts, and collecting 
microscopic images for model training (Fig. 1).

Mold acquisition
Microorganisms were sampled and revived from four 
ancient archives with minimal intervention, including 
“Sequel of Comprehensive Reflections to Aid in Gov-
ernance” from the Ming Dynasty, “Supervised Copy 
of I Ching” from the Qing Dynasty, “True Interpreta-
tion of Journey to the West” from Qing dynasty, and 
“Veritable Records of the Qing Dynasty” from Qing 
dynasty (Fig. 2B), that were stored in the department of 
rare books and special collection at Liaoning Univer-
sity Library. Over 10 different strains of microorganism 
were resuscitated from the books, and four strains of 
molds that were most commonly found to contaminate 
paper-based materials and pose more serious threat were 
selected for this project: Aspergillus niger (A. Niger), 
Aspergillus oschraceus (A. Oschraceus), Cladosporium, 
and Paenibacillus polymyxa (P. Polymyxa) [6, 24–27]. A. 
Niger is one of the most commonly mentioned molds in 
literature. Besides producing cellulolytic enzymes that 
can digest cellulose, A. Niger can also secrete a wide 
spectrum of biological enzymes, including amylase, pec-
tinase, and protease, whose by-products, can increase 
the overall acidity in the paper, and then induce severe 
loss of papers’ folding endurance in the long-term [25, 
28]. Cladosporium can also secrete cellulolytic enzymes. 
Even though its activity is not as high as that of A. Niger, 
Cladosporium is capable of secreting pigments with high 
concealment over the original material [29–31]. P. Poly-
myxa is a type of bacteria that is not only potent in pro-
tein hydrolysis and cellulose degradation but also tends 
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to secrete humus compounds consisting of polysaccha-
ride, lipid, protein, and nucleic acid, which cause adhe-
sion between papers [32, 33]. A. Oschraceus was selected 
for its potency in producing spores and causing large-
scale air contamination that may induce asthma and even 
cancer for people who have been in contact with the con-
taminated materials [34]. The following step-by-step pro-
cedures outline the strain extraction process:

1. Visually identify regions of paper that show signifi-
cant colonization of microorganism contamination 
from ancient books.

2. Gently swab the discolored region to collect microor-
ganism strains and place the swab, together with liq-
uid beef extract peptone medium (BPM), in a coni-
cal flask and culture the suspension in a lab shaker at 
37 ℃ for 125r/min for 12–72 h.

3. Use dilution plating to transfer bacteria and fungus 
from liquid-state medium to solid-state BPM and 
potato dextrose agar medium (PDA) respectively and 

cultivate for 1–3 days at 28 ℃ for initial isolation and 
purification.

4. Select an isolated colony for streak plating and culti-
vate for 2–7 days at 28 ℃ for secondary isolation and 
purification.

5. Store the isolated strains using slant streaking at 4℃ 
for later use.

6. Use microorganism colony characteristics for pre-
liminary strain classification and then use 16 s rDNA, 
and 18 s/ITS rDNA for strain determination for bac-
teria and fungus respectively.

7. Select the aforementioned four microorganism 
strains and suspend them in a liquid medium. Place 
in lab shaker at 28 ℃ for 125r/min to further prolifer-
ate.

8. Centrifuge the suspension when reaches the logarith-
mic growth phase, collect condensation (microor-
ganism bodies), and re-suspend in sterile water. Save 
the solution containing the suspended microorgan-
isms for creating mockup samples.

Fig. 1 Sample acquisition pipeline
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9. Bio-waste disposal: The residual material, including 
all apparatus that came in contact with the microor-
ganism such as the contaminated paper, underwent 
neutralization procedures as enforced by the health 
administration agency.

Mockup construction
Because the ancient documents that the molds were sam-
pled from are fragile due to natural aging and are off the 
limit for frequent access, mockups of mold-contaminated 
papers were constructed. The microorganism suspen-
sion solutions, obtained in “Mold acquisition” section, 
are evenly sprayed onto pre-cut 15  cm × 15  cm papers 
using a fog spray, with three duplicate samples for each 
strain. The sprayed papers are then sealed in Ziplock bags 
to avoid contamination and inoculated for 7–10  days 
in an incubator at 28 ℃. As a way to mimic the growth 

environment of microorganisms on paper-based relics, 
routinely spray sterile water onto contaminated papers 
every 12  h to facilitate the growth and reproduction of 
the microorganisms.

Image collection
Microscopic images of the mold-contaminated papers, 
obtained from step 2.1.2, were collected for the four 
strains of microorganisms with three different mag-
nifications, including 10 × and 40 × from a standard 
laboratory compound microscope, as well as one from 
a commercially available phone-attached microscope 
lens that was bought online (Fig.  2A). The images 
obtained with the commercial microscope lens were 
included to enhance the accessibility and portability of 
the model. Costing less than $40 on Amazon, the lens 
would allow people to capture microscopic features 
similar to the ones captured by the standard laboratory 

Fig. 2 Image processing and modeling pipeline. A Microscopic images of the strains being classified. B Ancient paper artifacts were used 
to retrieve the mold strains, and strain growth in the culturing environment. C Image augmentation pipeline with random cropping and rotation. D 
Transfer learning modeling architecture with different partial training paradigms
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microscope. Additionally, microscopic images with-
out any microorganisms under the field of view were 
added to the image collection to serve as blank con-
trols, allowing the CV algorithm to only learn about the 
representative features of the mold instead of the paper 
cellulose background.

Modeling
The modeling process contains the training phase and 
the testing phase. The training phase involves training 
a CNN model to identify mold species. Images are first 
labeled with the corresponding classes, in this case, the 
strains, and then undergo data preprocessing to obtain 
the training data before being fed into the training pro-
cess. The model gradually improves itself over training 
epochs until it achieves optimal results for the set of 
evaluation criteria. The trained models are further vali-
dated using testing data, a completely new set of images 
that the model had not seen before, to evaluate the 
robustness of the classification model (Fig. 3).

The process was carried out in the cloud-based Jupy-
ter Notebook environment provided by Google Colab, 
using NVIDIA A100 GPU. The deep neural network 
architecture was constructed using the TensorFlow API 
version 2.11.0.

Data preprocessing
The image dataset was divided into training and test-
ing sets before further preprocessing. This prevents the 
risk of testing images inadvertently being included in the 
training set, often referred to as data leakage, which pre-
vents the model from memorizing specific images and 
causing a pseudo-confident model. Further, given the 
limited number of images that can be generated from 
ancient books with highly restricted access, data aug-
mentation is used to augment the number of images to 
reduce the risk of overfitting. Overfitting refers to the 
situation that, when the number of training samples is 
limited, the models will become overly familiar with the 
training data that they almost remember certain features 
but cannot generalize well to features that it was not 
exposed to before. Traditional data augmentation tech-
niques for image data include rotating the images within 
a range of angles, translating or flipping the images in 
various directions, and cropping the images [35]. In this 
study, data augmentation was achieved through random 
cropping and rotation (Fig. 2C). The crop was generated 
by first initializing the x and y coordinates of a random 
starting point (i.e. the upper-left corner coordinate) and 
pinpointing the other three corner coordinates to create 
1000pixels × 1000pixels images. The randomized crop-
ping procedure was repeated on each image for 50 times. 

Fig. 3 Modeling Pipeline
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Then, the cropped sections were rotated in angles of 
n × π

8
 , where 0 ≤ n < 8, to further augment the number of 

images. In the end, images that do not contain sufficient 
representative features were manually discarded from 
the image dataset to avoid false positives in the learning 
process.

Modeling scheme
In this study, a transfer learning scheme was used for 
training the classification model. To further prevent 
overfitting, transfer learning offers a solution by leverag-
ing the knowledge, represented as weights in the model, 
gained from off-the-shelf pre-trained models that were 
trained on well-rounded datasets, such as ImageNet, a 
large natural image database containing over 14 million 
images of 20,000 types of objects. Through transfer learn-
ing, the development pipeline is simplified by avoiding 
training a new model all from scratch [36]. The modified 
model is then trained on data from the target domain to 
further tune the model weights, through a process called 
fine-tuning, to adapt to more niche tasks [35, 37–40].

The train/freeze trade-off was considered when fine-
tuning the transfer learning scheme used in this study. 
The initial weights of the pre-trained models enable the 
model to perform well on the pretraining dataset (i.e. 
ImageNet) so that, during the later fine-tuning on the 
target data, knowledge learned about general graphi-
cal features can be transferred, rather than learning 
from scratch. In practice, the transferred knowledge was 
retained at various levels by freezing different numbers 
of layers in the model. Freezing more layers in the pre-
trained model can reduce the amount of computation 
needed. However, when the pretraining dataset is largely 
different from the target dataset, it would make the 
model underfitting on the target features. On the other 
hand, unfreezing more layers in the pre-trained model 
can increase the fitting performance on the target set. 
However, unfreezing too many would be equivalent to 
training the model from scratch, which demands longer 
training time and more computational resources.

In this study, three types of finetuning schemes were 
experimented with, considering the train/freeze trade-
off, namely full finetuning, partial finetuning, and no 
fine-tuning (Fig. 2D). No finetuning refers to setting the 
feature extraction block that was transferred from the 
pre-trained models to untrainable, and only the classifi-
cation layer is set to be trainable so that the architecture 
can adapt to the new classification task. Partial finetun-
ing refers to partially unfreezing the feature extraction 
block to allow some layers to be trainable with the new 
set of data while the rest are not trainable. In particular, 
shallow layers of the feature extraction layer that capture 
higher-level information are set to be trainable to better 

learn the features that are unique to the new image set, 
while deeper layers that capture lower-level information 
such as edges, lines, and colors, are set to be non-train-
able because those are characteristics shared by nearly 
all objects. Finally, the full finetune refers to setting the 
overall architecture, including the transferred feature 
extraction layers as well as the classification layer, to be 
trainable by the new image data.

Model architecture
Convolutional Neural Networks (CNN) is one of the 
mainstream algorithms powered by DL [41], widely 
explored in numerous CV application scenarios, such 
as medicine [42], robotics [43], etc. CNN models are 
achieved with supervised learning, where a large number 
of images are presented with labels to the model, then the 
model, which is composed of a series of layers to detect 
different features of the input images, will gradually learn 
the representative features corresponding to each label.

Visual Geometry Group (VGG) and Residual Network 
(ResNet) architectures, both widely applied CNN archi-
tectures [41, 44], were investigated in this study because 
they have shown consistent performance in microscopic 
image classification through training with large amounts 
of data or transfer learning [16, 39].

The feature extraction layers of the two pre-trained 
networks, VGG16 and ResNet50, are transferred for 
the new classification task, as explained in “Modeling 
Scheme” section. A Global Average Pooling (GAP) layer, 
proposed as an alternative for fully connected layers in 
classical CNNs [45], is added after the output of the fea-
ture extraction to take the average of each of the feature 
maps from the last layer of the feature extraction block 
and flatten it into a one-dimensional vector. GAP layers 
can efficiently reduce the spatial dimensions of three-
dimensional feature maps by downsampling the entire 
feature map to a single value [46]. The one-dimensional 
output from the GAP layer is then passed into a fully 
connected layer with five nodes, each representing a class 
label of the classification task (Fig. 2D).

Modeling experiment
A dynamic adjustment of the number of training epochs 
and learning rate was experimented in the study. Early 
stopping is implemented with pre-defined stopping cri-
teria during the training process to avoid overfitting. In 
the study, parameters including categorical cross-entropy 
loss, accuracy, recall, precision, and F1 scores of both the 
training and validation sets were used as stopping crite-
ria with a wait time of 20 epochs. So, if the parameters 
being monitored remain unchanged (i.e. the validation 
accuracy does not further increase and the validation 
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loss does not further decrease) after 10 epochs, then the 
training process will terminate.

On the other hand, learning rate specifies the rate at 
which the weights are being adjusted. A higher learning 
rate adjusts the weights more at a time, while a smaller 
learning rate leads to smaller adjustments. Early into 
training, a smaller learning rate may not allow the model 
to achieve its best potential due to convergence to a local 
minimum instead of a global minimum, while a larger 
learning rate would allow more rapid optimization. 
However, as the number of training epochs gets higher, 
a larger learning rate may negatively affect the optimiza-
tion by causing non-convergence, while a smaller learn-
ing rate can help slowly optimize the model to achieve a 
global minimum in the loss. Thus, in the study, an expo-
nential decay scheme was used to decrease the learning 
rate with the increasing number of training epochs.

The models were all trained using ADAM optimizer, 
and the architectures experimented on are summarized 
in Table 1, including the pre-trained model architecture, 
hidden layer architecture, and unfrozen (i.e. trainable) 
layers, as well as the pre-trained weights.

Web‑based application
To allow the conservation community access to the clas-
sification tool, a web-based interface was constructed 
using Streamlit. Streamlit is an open-source platform 
and Python library that allows machine learning and AI 
development teams to quickly construct interactive web-
based platforms. The models fine-tuned for the classifica-
tion task were saved as TensorFlow H5 file formats and 
were reconstructed in the Streamlit environment. The 
web widgets, including the image upload function, model 
selection button widgets, and drop-down boxes are built-
in functions of the Streamlit library. The interface allows 
users to upload their microscopic images of mold-con-
taminated artifacts and classify the strain of the mold 

presented. A knowledge base, stored as a Python diction-
ary, was also constructed to store relevant information 
about each strain, such as the health risks associated with 
the strain and recommendations for treatment. Future 
expansion and refinement of the model can be acceler-
ated with the involvement of the research community. 
Therefore, a feedback mechanism was implemented to 
enable researchers and experts to contribute new images 
to the current image repository, correct labels if the 
model provides an erroneous classification, and intro-
duce new strains.

Results and discussion
Model performance
The respective performances of the models are summa-
rized in Table  2 corresponding to the models by index 
number. The parameters recorded to evaluate the model 
performance were loss, accuracy, precision, recall, and 
F1 score, for both the training and validation sets. Since 
early stopping was implemented during the training pro-
cess, the evaluation parameters are all optimal values that 
triggered the early termination. More specifically, the 
maximum values of accuracy, precision, recall, and F1 
score, as well as the minimum value of loss are recorded 
in the table. The epoch at which the training process ter-
minated is recorded in the last column as a reference for 
convergence speed.

Overall, according to the training performance sum-
marized in Table 2 as well as Fig. 4. Both types of CNN 
model architectures, VGG16 and ResNet50, demonstrate 
sufficient convergence between the training and valida-
tion sets, indicating the capability of the traditional con-
volutional neural network for this classification task.

The performance of the developed model was tested 
using a testing set containing new images of the pre-iden-
tified microorganism strains, with the confusion matrix 
showcased in Fig. 4B. According to the confusion matrix, 

Table 1 Modeling Experiment Architectures

The summary of architecture experiments. Transferred Model refers to the main CNN architecture used, Hidden Layers refers to the additional architectures added to 
the transferred models, Finetune refers to the fine-tuning schemes, and Weights refers to the initialized weights of the pretrained models

Model Transfered model Hidden layers Finetune Weights

1 VGG16 GAP + FC(5) All frozen ImageNet

2 VGG16 Flatten + FC(2048) + FC(1024) + FC(5) Partial finetune ImageNet

3 VGG16 GAP + FC(5) Partial finetune ImageNet

4 VGG16 GAP + FC(5) Full finetune ImageNet

5 VGG16 GAP + FC(5) Full finetune Random

6 ResNet50 GAP + FC(5) All frozen ImageNet

7 ResNet50 GAP + FC(5) Partial finetune ImageNet

8 ResNet50 GAP + FC(5) Full finetune ImageNet

9 ResNet50 GAP + FC(5) Full finetune Random
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for the total 752 test cases, 679 cases were correctly 
predicted, achieving a testing accuracy of 90.29%. In 
detail, A. Niger achieved 88.1% accuracy, A. Oschraceus 
achieved 99.3% accuracy, Cladosporium achieved 85.6% 
accuracy, and P. Polymyxa achieved the highest predic-
tion accuracy among all four strains of 99.5%. There are 8 
false positive predictions of A. Oschraceus that should be 
A. Niger, and 1 false positive prediction of A. Niger that 
should be A. Oschraceus. These misclassifications could 
be due to the structural similarity between the two spe-
cies since they both belong to the same Aspergillus genus. 

The misclassification cases of Cladosporium concentrate 
at P. Polymyxa, because the two strains share high com-
monalities in their microscopic features. The blank con-
trol has false positive classifications from all of the four 
strains particularly from A. Niger. This could be due to A. 
Niger having the smallest bodies among the four strains, 
which makes the background paper cellulose structures 
have more confounding power during the classification.

Further, feature maps of the trained classification 
models were investigated. Visualizing feature maps 
in a deep CNN can provide insights into the learned 

Table 2 Model performance summary

The model number corresponds to the models listed in Table 1
1 The performance in the training phase
2 The performance in the testing phase

Model Training1 Testing2 Epochs

Loss Acc Precision Recall F1 Loss Acc Precision Recall F1

1 0.2381 0.9332 0.9572 0.8996 0.9076 0.2868 0.9055 0.9314 0.8702 0.8775 65

2 5.8e–6 1.0 1.0 1.0 0.9864 0.7753 0.8099 0.9160 0.8090 0.7616 36

3 0.0069 0.9990 0.9992 0.9986 0.9876 0.1044 0.9772 0.9784 0.9768 0.9660 53

4 4.7e–6 1.0 1.0 1.0 0.9922 0.1528 0.9788 0.9790 0.9790 0.9715 38

5 0.0007 0.9997 0.9997 0.9997 0.9905 0.0572 0.9902 0.9908 0.9822 0.9785 55

6 0.0983 0.9842 0.9897 0.9754 0.9711 0.1270 0.9663 0.9776 0.9585 0.9607 54

7 7.7e–5 1.0 1.0 1.0 0.9912 0.0016 0.9995 0.9946 0.9946 0.9962 34

8 0.0004 1.0 1.0 1.0 0.9911 0.0057 0.9984 0.9984 0.9984 0.9883 57

9 0.0094 0.9981 0.9981 0.9978 0.9848 0.0159 0.9984 0.9984 0.9984 0.9924 77

Fig. 4 Model performance summary. A Training and validation accuracy and loss for the two major CNN architectures investigated: VGG16 
and ResNet50. Training and validation showing convergence tendencies, demonstrating the potential for microscopic image classification. B 
Confusion matrix for the classification accuracy among five categories, including blank control. C Feature map of the CNN model
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representations, including patterns, shapes, and textures, 
to help us understand how the model processes and inter-
prets the input data. Figure 4C shows the feature map vs. 
the original image for A. Niger. The dark dots that scatter 
the original image are the microorganism bodies and the 
gray shadows in the background are cellulose fibers. The 
brighter plasma colors in the feature map are regions that 
contain the information that the model deems important 
for the classification task, in other words, the representa-
tive features that are learned by the model to identify the 
respective microorganism. When comparing the feature 
map with the original image, promising alignments can 
be seen between the microorganism bodies’ contours 
and the highlighted area on the feature map as well as 
between the cellulose fibers and the darker shadows in 
the feature map, indicating the model has successfully 
learned about the actual morphological features of the 

microorganism bodies with contrast to the background 
cellulose fibrous structures for the classification task.

Web‑application & community engagement
The purpose of this segment of the work is to promote 
resource sharing and establish protocols for the collective 
advancement of deep learning applications in cultural 
heritage. As [37] mentioned, the success of deep learn-
ing models depends on the power of the dataset that the 
model was trained on, which includes the number of 
data and the quality of data. Specifically, a database that 
incorporates metadata of nucleotide sequences, micro-
bial strains, and potential enzymatic properties as well 
as their destructive mechanism in the biodeterioration of 
different materials should be created and curated to assist 
more efficient identification, removable, and prevention 
of contaminating fungal strains [9]. At the same time, 
better resource sharing can be achieved by developing 

Fig. 5 Mold classification iterative learning pipeline and web-based application. A Pipeline for iterative learning of the mold classification model 
with human feedbacks. B Web-based application: main page. C Web-based application: classification page. D Web-based application: knowledge 
retrieval and representation wiki page
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online platforms. For example, through the collective 
force of people who share an interest in fungi, a fine-
grained classification dataset was developed—Danish 
Fungi 2020 (DF20) [47]. A mobile application based on 
CV, named FungiVision, was then established to classify 
different types of fungi and assist Mycology.

The web-based interface (https:// biode grade- diagn 
ostics. strea mlit. app/) developed in this study allows three 
streams of activities that form a closed loop, which we 
call an “iterative learning scheme” (Fig. 5A). First, when 
a new image of an unknown strain is uploaded to the 
application, users can choose from different classification 
models, which were trained on existing data, to perform 
the classification task and produce the predicted class 
label of the unknown strain (Fig.  5B, C). Then, the sec-
ond stream of functionality is to retrieve the knowledge 
stored in the knowledge base about the classified strain 
(Fig.  5D). Currently, the knowledge base that the users 
can access incorporates information including morphol-
ogy, cultural and molecular analyses, potential enzymatic 
properties, and their destructive mechanism to assist 
practitioners in developing the most suitable treatment 
techniques. Lastly, the third stream of function allows the 
user, after receiving classification results from the algo-
rithm, to decide whether to accept the provided label and 
information. If the human user/expert raises a concern 
regarding the accuracy of the label provided, they can 
modify the label or add a new label if the species does not 
exist in the existing list of strains. The activity, including 
both the machine output and human input, will be logged 
in the back-end. Then, users can initiate a pulling request 
of the administrator to both update the image database 
and re-train the classification models.

Outlooks & improvements
This project trained a multi-class model that can distin-
guish between four strains of molds by feeding in images 
that contain only one strain per image. In real-life situ-
ations, such as archives and museums, or even freshly 
excavated cultural remains, there could be multiple 
strains of microorganisms contaminating the same sur-
face area of the paper. To adhere to the principle of mini-
mal intervention and apply strain-specific treatments, a 
multi-label classification model can be further developed, 
in case multiple different strains of microorganisms are 
captured in the same microscopic image.

The current project is just the prototype of AI inte-
gration in conservation practice. While there are many 
more strains of molds presented on cultural heritage, the 
refinement of the model, to let the models become more 
accurate and more generalizable, requires effort from 
the research community. The web-based application, 

implemented with the human feedback functionality, 
would serve as a platform to achieve such an endeavor as 
more and more specialists participate.

Conclusion
Our study showed the competency of CNN models in 
classifying microscopic images to achieve the end of 
identifying the microorganism strain presented. A suite 
of models that are competent in the classification task 
were generated as deliverables for the conservation com-
munity to use and contribute. At the same time, we pro-
posed a sustainable application framework, accessible 
as a web-based application, to engage the conservation 
community to collaborate and contribute to the further 
improvement of the models.
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